[1] Example 0101 - basic template

This model calculates the mid-span beam moment under uniformly distributed (UDL) floor loads.

Figure 1.1: Simply supported beam

operation examples:

- [s] section
- [y] sympy and LaTeX symbolic expresssions
- [t] term
- [e] equation
- [#-] format and file operations

reST markup examples:

- lists, **bold**, *italic*
- tables
- raw latex

Notation: (LaTeX block is not processed for UTF calcs)

 D_n = nominal dead load of material or component n

 L_n = nominal live load from action n

 DL_n, LL_n = sum of nominal dead or live loads

 l_n = effective beam span

 ω_n = factored line load on element n

 M_n = factored bending moment on component n

 q_n = factored area load n

 w_n = tributary width n

[2] Beam Loads and geometry

Dead and live load contributions to beam UDL

ASCE 7 - 05 Load Effects

Equation No.	Load Combination
16-1	1.4(D+F)
16-2	1.2(D+F+T) + 1.6(L+H) + 0.5(Lr or S or R)
16-3	1.2(D+F+T) + 1.6(Lr or S or R) + (f1L or 0.8W)

Dead loads

joists plywood partitions fixed machinery	D_1 = 3.8 psf D_2 = 2.1 psf D_3 = 10.0 psf D_4 = 0.5 kips/ft
Live loads	
ASCE7-05	L_1 = 40.0 psf
Boom tributory width and man	

Beam tributary width and span

distance between beams	W_	_1	=	2.0 1	ft
beam span	l	_1	=	14.0	ft

[3] Maximum bending moment

DL_1 | Total UDL factored dead load [3.1]

$$1.2 \cdot D_4 + 1.2 \cdot w_1 \cdot (D_1 + D_2 + D_3)$$

$$DL_1 = 0.64 \, kips/ft$$

LL_1 | Total UDL factored live load [3.2]

 $1.6 \cdot L_1 \cdot w_1$

$$LL_1 = 0.13 \ kips/ft$$

omega_1 | factored UDL [3.3]

 $DL_1 + LL_1$

 $omega_1 = 0.77 \ kips/ft$

M_1 | Bending moment at mid-span [3.4]

$$\frac{\frac{\omega_1}{8} \cdot l_1^2}{\frac{0.77 kips/ft}{8} \cdot 14.00 ft^2}$$

 $M_1 = 18.8 ft.kip$

[0101]

[4] Symbolic rendering using sympy or LaTeX

Equation rendered from **SymPy**

Equation rendered from LaTeX (expresssion copied from Wikipedia HTML source)

 $\sigma = \frac{M}{I} \cdot z$

[4.2]

$$\sigma = \frac{Mz}{I} = -zE \; \frac{\mathrm{d}^2 w}{\mathrm{d}x^2}$$

This document (the calc) is generated from a on-c-e public domain template. The calc is licensed under the CCO 1.0 Public Domain Dedication at http://creativecommons.org/publicdomain/zero/1.0/ The calc is not a structural design calculation. The calc user assumes sole responsibility for all inputs and results.

[end of calc]

[4.1]